Động Cơ

Trên những động cơ 3 pha thường được gắn kèm với một nhãn, trên đó ghi thông tin cần thiết của động cơ, nó được gọi là nhãn của động cơ 3 pha (hay gọi tắt là Name tag).

Hình 1. Một số nhãn của các động cơ 3 pha.

Vấn đề đặt ra là trên các nhãn đó ghi những thông tin gì? Nó có giúp ích gì cho chúng ta hay không?

Để trả lời câu hỏi đó thì ta cùng tìm hiểu sơ lược về những thông số được ghi trên nhãn của động cơ 3 pha qua bài viết nhé!

1. Sơ lược về các thông số trên nhãn động cơ 3 pha

Trên nhãn của một động cơ 3 pha thông thường sẽ có những thông số quan trọng như sau:

– Công suất định mức (Hp, kW, W): là công suất định mức đầu ra trên trục động cơ (động cơ), công suất điện đưa ra (máy phát). Hay nói cách khác là công suất cơ trên trục động cơ.

– Điện áp dây định mức Uđm(V): đối với động cơ ba pha là U dây, đối với động cơ một pha thì U là điện áp đặt trên đầu cực của động cơ (Pha-trung tính, pha-pha).

– Dòng điện dây định mức Iđm(A).

Ví dụ: Trên nhãn động cơ ghi Δ/Y – 220/380V – 7,5/4,3A có nghĩa là khi điện áp dây lưới điện bằng 220V thì ta nối dây quấn stator theo hình tam giác và dòng điện dây định mức tương ứng là 7,5A. Khi điện áp dây lưới điện là 380V thì dây quấn stator nối theo hình sao, dòng điện định mức là 4,3A.

– Tốc độ quay định mức nđm (vòng/phút).

– Tần số định mức (Hz).

– Cấp cách điện.

– Hệ số công suất định mức (cosφ).

– Hiệu suất định mức (η).

– Loại động cơ: Theo các tiêu chuẩn National Electrical Code và National Electrical Manufactures Association (NEMA), các motor được phân loại bởi kí tự đặc trưng cho tỉ số của dòng khởi động và dòng định mức. Có 6 loại: A, B, C, D, E, F. Bằng các kí tự này, có thể xác định chính xác được dòng định mức của CB (Circuit Breaker), cầu chì (Fuse) và các thiết bị bảo vệ khác.

  • Loại A: Dòng khởi động bình thường, 5 đến 7 lần dòng định mức. Trên 7,5HP phải giảm điện áp khởi động, momen khởi động bình thường và khoảng 150% định mức. Đây là loại motor bình thường (Normal type), thông dụng (General Purpose) như: máy công cụ, bơm ly tâm, bộ động cơ – máy phát, quạt, máy thổi, các thiết bị cần momen khởi động thấp.
  • Loại B: điện kháng cao và dòng khởi động thấp do các rãnh của rotor kín, sâu và hẹp. Thông dụng như loại A. Nhiều nhà sản xuất chỉ chế tạo động cơ General Purpose trên 5 Hp.
  • Loại C: Dòng khởi động thấp 4,5 đến 5 lần định mức, momen khởi động cao khoảng 225% định mức, rotor lồng sóc kép. Ứng dụng: máy nén khí, máy bơm kiểu piston, máy trộn, máy nghiền, băng tải (conveyor) khởi động dưới tải, máy làm lạnh lớn, các thiết bị cần momen khởi động lớn.
  • Loại D: Dòng khởi động thấp, momen khởi động cao khoảng 275% định mức, dây quấn rotor có điện trở lớn. Loại motor này chỉ thích hợp với hoạt động không liên tục (intermittent) và tốc độ không phải ổn định vì độ trượt quá cao và hiệu suất quá thấp. Ứng dụng: máy đóng, máy cắt tỉa, xe ủi đất, máy nâng nhỏ, máy kéo kim loại, máy khuấy,…
  • Động cơ rotor dây quấn: điện trở ở mạch rotor cho dòng điện khởi động thấp và momen khởi động cao. Ứng dụng: thang máy, máy nâng, cần trục (Crane), cán thép, máy ủi, tải quặng hoặc than,…

Hình 2. Ví dụ về nhãn của một động cơ 3 pha bất kì.

Hình 3. Một số nhãn của động cơ 3 pha.

2. Công suất trong động cơ 3 pha

2.1. Công suất của động cơ nhận từ nguồn

Pđiện = P= 3U1I1cosφ

Trong đó:

2.2. Các công suất hao phí

Trong quá trình vận hành động cơ 3 pha sẽ xảy ra một số năng lượng bị hao phí, bao gồm:

  • Tổn hao đồng trên dây quấn stator (Pđ1).
  • Tổn hao sắt từ trong lõi thép stator (Pt).
  • Công suất điện từ: Là công suất nhận từ nguồn đưa vào rotor sau khi mất đi 1 phần do tổn hao đồng và sắt từ trên stator (Pđt).
  • Tổn hao đồng trên dây quấn rotor (Pđ2).
  • Tổn hao cơ trên trục (PC).

2.3. Công suất cơ có ích trên trục (công suất ra)

Là phần công suất cơ sau khi trừ đi do tổn hao ma sát, quạt và tổn hao phụ:

Pcơ có ích = P= P– Pmq

Tổng tổn hao trong đông cơ là:

∆P = Pđ1 + P+ Pđ2 + Pmq

2.4. Hiệu suất động cơ

3. Ví dụ về tính toán

Hãng sản xuất A có một động cơ 3 pha, nhãn của động cơ ghi những thông số như sau:

  • Điện áp: Y/∆ – 380/220V.
  • Công suất: 3 Hp.
  • Tốc độ: 2940 vòng/phút.
  • Hệ số công suất: cosφ = 0,89.
  • Hiệu suất động cơ: η = 91,2%.
  • Tần số định mức 50 Hz.

Hãy tính toán dòng điện đầy tải của động cơ và Momen quay định mức ở đầu trục động cơ.

Ta có:

– Dòng đầy tải của động cơ được xác định:

– Momen quay định mức ở đầu trục:

Động cơ không đồng bộ 3 pha là loại máy điện xoay chiều, biến điện năng thành cơ năng và hoạt động dựa trên nguyên tắc cảm ứng điện từ có tốc độ quay của Rotor nhỏ hơn tốc độ quay của từ trường.

Máy điện không đồng bộ có nhiều loại, được chia theo nhiều cách khác nhau, sau đây là một số loại cơ bản:

  • Theo kết cấu của vỏ: máy điện không đồng bộ có thể chia theo các kiểu chính sau: kiểu kín, kiểu hở, kiểu bảo vệ, kiểu chống nổ…
  • Theo kết cấu Rotor: Rotor kiểu lồng sóc và Rotor kiểu dây quấn.
  • Theo số pha trên dây quấn Sator: 1 pha, 2 pha, 3 pha.

Để hiểu rõ hơn về loại động cơ không đồng bộ 3 pha này, chúng ta sẽ cùng đi tìm hiểu cấu tạo của nó như thế nào qua bài viết này nhé!

Hình 1. Cấu tạo chung của động cơ không đồng bộ 3 pha.

Động cơ không đồng bộ 3 pha được khái quát như hình 1, có hai phần chính để động cơ hoạt động, đó là:

1. Stator (Đứng yên)

Bên trong khung Stator bao gồm lõi thép, dây quấn Stator (cuộn dây Stator) và vỏ máy.

Hình 2. Cấu tạo chung của Stator.

Hình 3. Sơ đồ mặt cắt của stator.

1.1.  Lõi thép

Hình 4. Hình chiếu mặt cắt của lõi thép trong Stator.

  • Được ép trong vỏ máy làm nhiệm vụ dẫn từ.
  • Lõi thép stator hình trụ do các lá thép kỹ thuật điện được dập rãnh bên trong ghép lại với nhau tạo thành các rãnh.
  • Mỗi lá thép kỹ thuật đều được phủ sơn cách điện để giảm hao tổn do dòng xoáy gây nên.
  • Phía trong có xẻ rãnh để đặt dây quấn.

1.2.  Dây quấn

Hình 5. Sơ đồ khai triển dây quấn ba pha đặt trong 12 rãnh.

– Dây quấn stator làm bằng dây đồng, bọc cách điện, đặt trong các rãnh của lõi thép.

– Sơ đồ khai triển dây quấn ba pha đặt trong 12 rãnh:

  • Dây quấn pha A trong các rãnh 1, 4, 7, 10.
  • Dây quấn pha B trong các rãnh 3, 6, 9, 12.
  • Dây quấn pha C trong các rãnh 5, 8, 11, 2.
  • Dòng xoay chiều ba pha chạy trong ba pha dây quấn stator sẽ tạo ra từ trường quay.

1.3.  Vỏ máy

  • Giữ chặt lõi thép và cố định máy trên bệ.
  • Được làm bằng nhôm hoặc gang.
  • Hai đầu có nắp máy, trong nắp có ổ đỡ trục.
  • Vỏ và nắp máy còn dùng để bảo vệ máy.

2. Rotor (Quay)

Rotor cũng bao gồm lõi thép và dây quấn.

Hình 6. Cấu tạo của rotor.

Hình 7. Sơ đồ mặt cắt rotor.

2.1.  Lõi thép

Hình 8. Hình chiếu mặt cắt của lõi thép rotor.

  • Gồm các lá thép kỹ thuật điện giống stator, các lá thép này lấy từ phần ruột bên trong khi dập lá thép stator.
  • Mặt ngoài có xẻ rãnh đặt dây quấn rotor, ở giữa có lỗ để gắn với trục máy.
  • Trục máy được gắn với lõi thép rotor và làm bằng thép tốt.

2.2.  Dây quấn

Dây quấn được đặt trong lõi thép rôto, và phân làm 2 loại chính: loại rotor kiểu lồng sóc và loại rotor kiểu dây quấn.

Hình 9. Hình minh hoạ cho dây quấn bên trong rotor.

– Rotor dây quấn:

Hình 10. Rotor dây quấn và sơ đồ mạch điện của rotor dây quấn.

  • Giống dây quấn stator.
  • Dây quấn ba pha của rotor đấu sao, ba đầu còn lại được nối với ba vành trượt làm bằng đồng gắn ở một đầu trục, cách điện với nhau và với trục.
  • Thông qua chổi than và vành trượt, có thể nối dây quấn rotor với điện trở phụ bên ngoài. Khi làm việc bình thường, dây quấn rotor được nối ngắn mạch.

– Rotor lồng sóc:

Hình 11. Rotor lồng sóc và rotor lồng sóc rãnh chéo.

  • Rotor lồng sóc của các máy công suất lớn hơn 100 kW là các thanh đồng đặt trong rãnh của lõi thép, hai đầu nối ngắn mạch bằng hai vòng đồng tạo thành lồng sóc.
  • Đối với động cơ công suất nhỏ, lồng sóc được chế tạo bằng cách đúc nhôm vào các rãnh lõi thép rotor, tạo thành thanh nhôm, hai đầu đúc vòng ngắn mạch và cánh làm mát.

Động cơ không đồng bộ 3 pha là loại máy điện xoay chiều, biến điện năng thành cơ năng và hoạt động dựa trên nguyên tắc cảm ứng điện từ có tốc độ quay của Rotor nhỏ hơn tốc độ quay của từ trường.

Máy điện không đồng bộ có nhiều loại, được chia theo nhiều cách khác nhau, sau đây là một số loại cơ bản:

  • Theo kết cấu của vỏ: máy điện không đồng bộ có thể chia theo các kiểu chính sau: kiểu kín, kiểu hở, kiểu bảo vệ, kiểu chống nổ…
  • Theo kết cấu Rotor: Rotor kiểu lồng sóc và Rotor kiểu dây quấn.
  • Theo số pha trên dây quấn Sator: 1 pha, 2 pha, 3 pha.

Để hiểu rõ hơn về loại động cơ không đồng bộ 3 pha này, chúng ta sẽ cùng đi tìm hiểu cấu tạo của nó như thế nào qua bài viết này nhé!

Hình 1. Cấu tạo chung của động cơ không đồng bộ 3 pha.

Động cơ không đồng bộ 3 pha được khái quát như hình 1, có hai phần chính để động cơ hoạt động, đó là:

1. Stator (Đứng yên)

Bên trong khung Stator bao gồm lõi thép, dây quấn Stator (cuộn dây Stator) và vỏ máy.

Hình 2. Cấu tạo chung của Stator.

Hình 3. Sơ đồ mặt cắt của stator.

1.1.  Lõi thép

Hình 4. Hình chiếu mặt cắt của lõi thép trong Stator.

  • Được ép trong vỏ máy làm nhiệm vụ dẫn từ.
  • Lõi thép stator hình trụ do các lá thép kỹ thuật điện được dập rãnh bên trong ghép lại với nhau tạo thành các rãnh.
  • Mỗi lá thép kỹ thuật đều được phủ sơn cách điện để giảm hao tổn do dòng xoáy gây nên.
  • Phía trong có xẻ rãnh để đặt dây quấn.

1.2.  Dây quấn

Hình 5. Sơ đồ khai triển dây quấn ba pha đặt trong 12 rãnh.

– Dây quấn stator làm bằng dây đồng, bọc cách điện, đặt trong các rãnh của lõi thép.

– Sơ đồ khai triển dây quấn ba pha đặt trong 12 rãnh:

  • Dây quấn pha A trong các rãnh 1, 4, 7, 10.
  • Dây quấn pha B trong các rãnh 3, 6, 9, 12.
  • Dây quấn pha C trong các rãnh 5, 8, 11, 2.
  • Dòng xoay chiều ba pha chạy trong ba pha dây quấn stator sẽ tạo ra từ trường quay.

1.3.  Vỏ máy

  • Giữ chặt lõi thép và cố định máy trên bệ.
  • Được làm bằng nhôm hoặc gang.
  • Hai đầu có nắp máy, trong nắp có ổ đỡ trục.
  • Vỏ và nắp máy còn dùng để bảo vệ máy.

2. Rotor (Quay)

Rotor cũng bao gồm lõi thép và dây quấn.

Hình 6. Cấu tạo của rotor.

Hình 7. Sơ đồ mặt cắt rotor.

2.1.  Lõi thép

Hình 8. Hình chiếu mặt cắt của lõi thép rotor.

  • Gồm các lá thép kỹ thuật điện giống stator, các lá thép này lấy từ phần ruột bên trong khi dập lá thép stator.
  • Mặt ngoài có xẻ rãnh đặt dây quấn rotor, ở giữa có lỗ để gắn với trục máy.
  • Trục máy được gắn với lõi thép rotor và làm bằng thép tốt.

2.2.  Dây quấn

Dây quấn được đặt trong lõi thép rôto, và phân làm 2 loại chính: loại rotor kiểu lồng sóc và loại rotor kiểu dây quấn.

Hình 9. Hình minh hoạ cho dây quấn bên trong rotor.

– Rotor dây quấn:

Hình 10. Rotor dây quấn và sơ đồ mạch điện của rotor dây quấn.

  • Giống dây quấn stator.
  • Dây quấn ba pha của rotor đấu sao, ba đầu còn lại được nối với ba vành trượt làm bằng đồng gắn ở một đầu trục, cách điện với nhau và với trục.
  • Thông qua chổi than và vành trượt, có thể nối dây quấn rotor với điện trở phụ bên ngoài. Khi làm việc bình thường, dây quấn rotor được nối ngắn mạch.

– Rotor lồng sóc:

Hình 11. Rotor lồng sóc và rotor lồng sóc rãnh chéo.

  • Rotor lồng sóc của các máy công suất lớn hơn 100 kW là các thanh đồng đặt trong rãnh của lõi thép, hai đầu nối ngắn mạch bằng hai vòng đồng tạo thành lồng sóc.
  • Đối với động cơ công suất nhỏ, lồng sóc được chế tạo bằng cách đúc nhôm vào các rãnh lõi thép rotor, tạo thành thanh nhôm, hai đầu đúc vòng ngắn mạch và cánh làm mát.

Trong phần này, chúng ta sẽ cùng nhau tìm hiểu những thông số cơ bản có trên nhãn của động cơ cảm ứng.

Ở Bắc Mĩ, NEMA cũng đã thiết lập một số các tiêu chuẩn về thông tin của động cơ, nó được ghi rõ trên nhãn của chúng. Những thông tin này rất quan trọng, nó dùng để xác định các đặc tính của động cơ.

Bây giờ, chúng ta hãy nhìn vào nhãn của một động cơ như hình bên dưới.

Hình 1. Nhãn của một loại động cơ cảm ứng.

1. Horsepower – Mã lực (Ngựa)

Hình 2. Horsepower (Mã lực)

Mã lực là thước đo dùng để đánh giá đầu ra cơ học của động cơ và khả năng tạo ra momen cần thiết của nó cho yêu cầu về tải và tốc độ kéo tải.

Có loại động cơ ghi kW/HP, nó có nghĩa là công suất trên của động cơ (kW) hay mã lực (HP).

Trong công nghiệp hàng ngày chúng ta tạm quy ước: 1 HP = 0,75 kW (đây chỉ là giá trị tương đối).

2. Torque – Momen

Hình 3. Torque.

Momen là thước đo lực quay hoặc lực xoắn của động cơ tác dụng lên tải.

3. Motor Rates Voltage – Điện áp định mức của động cơ

Hình 4. Motor Rates Voltage.

Điện áp định mức của động cơ là điện áp hoạt động tối ưu của động cơ. Sai số của điện áp trong động cơ dao động trong khoảng 10% hoặc nhỏ hơn điện áp định mức được ghi trên nhãn của động cơ.

4. Motor Rates Current (FLA) – Dòng điện định mức của động cơ

Hình 5. Motor Rates Current (FLA).

Dòng điện định mức của động cơ là lượng Ampe mà động cơ cần khi nó hoạt động hết công suất của momen và mã lực.

5. Motor Rates Frequency (Hz) – Tần số định mức của động cơ

Hình 6. Motor Rates Frequency (Hz).

Tần số định mức của động cơ là tần số mà động cơ được thiết kế để vận hành. Ở Bắc Mỹ, tần số định mức là 60 Hertz (Hz).

Một số động cơ được thiết kế để làm việc với một ổ trục có tần số thay đổi hoặc VFD (biến tần), nó được đánh giá có thể làm việc ở các tần số khác nhau.

6. Motor Rates Speed (RPM) – Tốc độ định mức của động cơ

Hình 7. Motor Rates Speed (RPM).

Tốc độ định mức của động cơ hoặc tốc độ đầy tải (full load RPM) là tốc độ gần đúng mà tại đó Rotor đang quay khi động cơ hoạt động dưới mức đầy tải.

Tốc độ định mức của động cơ được thể hiện bằng số vòng quay mỗi phút.

7. Motor Poles – Cực động cơ

Hình 8. Motor Poles.

Cực động cơ cho biết số cực bên trong Stator của động cơ 3 pha.

8. Motor Phase – Số pha động cơ

Hình 9. Motor Phase.

Số pha động cơ là số dòng điện xoay chiều cung cấp cho động cơ, tất nhiên với một động cơ 3 pha thì sẽ có 3 đường dây điện cấp vào (L1, L2, L3).

9. NEMA Design Letter – Kiểu thiết kế theo chuẩn NEMA

Hình 10. NEMA Design Letter.

Kiểu thiết kế theo chuẩn NEMA cho biết kiểu mà động cơ được thiết kế, như kiểu A, B, C hoặc D.

Ngoài ra nó còn thể hiện việc mô tả momen và đặc điểm của động cơ.

10. Insulation Class (INS) – Lớp cách nhiệt

Hình 11. Insulation Class (INS).

Lớp cách nhiệt rất quan trọng trong một động cơ cảm ứng. Lớp cách nhiệt mô tả dung sai của cuộn dây động cơ, nó được thống kê như bảng sau:

Chữ cái A, B, F, H cho biết khả năng chịu đựng nhiệt độ của cuộn dây động cơ lúc nó vận hành trong một thời gian nhất định.

Động cơ được điều khiển bởi biến tần ở tốc độ thấp hơn thường có lớp cách nhiệt cao hơn.

11. Service Factor – Hệ số làm việc

Hình 12. Service Factor.

Hệ số làm việc thể hiện tỉ lệ quá tải của động cơ có thể xử lý thời gian ngắn khi động cơ hoạt động ở điện áp và tần số định mức.

12. Frame Size – Kích thước khung

Hình 13. Frame Size.

Kích thước khung là thông số về cấu trúc, kết cấu của động cơ.

A – Khái niệm động cơ điều khiển van gió Honeywell:

Động cơ điều khiển van gió là một phần của một hệ thống sưởi ấm, thông gió và điều hòa không khí (HVAC). Động cơ điều khiển van gió  (Damper Actuator) điều tiết, điều khiển việc mở và đóng của một van gió. Việc mở van gió cho phép không khí từ bên ngoài đi vào, để làm mát bên trong tòa nhà. Ngoài ra, nó có thể đóng van gió lại để giữ không khí bên trong.

Động cơ điều khiển van gió được thiết kế có thể điểu khiển bằng điện hoặc khí nén. Động cơ điều khiển van gió thực hiện theo dạng lò xo, quay, và các biến thể tuyến tính. Động cơ điều khiển van gió được sử dụng phụ thuộc vào cấu hình của hệ thống HVAC trong tòa nhà.

B – Động cơ điều khiển van gió Honeywell hoạt động như thế nào?

Động cơ van gió hoạt động cho phép một hệ thống HVAC đưa không khí ở bên ngoài. Một hệ thống điều hòa không khí có thể chạy ở công suất cần thiết để làm mát toàn bộ không gian trong một tòa nhà.

Nếu nhiệt độ bên ngoài phù hợp, thì việc tận dụng không khí sẽ làm giảm áp lực lên hệ thống. Không khí được làm mát trong hệ thống sẽ đi vào tòa nhà, không khí nóng sẽ được đưa ra ngoài.

C – Lưu ý khi sử dụng động cơ điều khiển van gió trong hệ thống HVAC

Động cơ điều khiển van gió hoạt động kết hợp với bộ phận điều hòa không khí khác. Cần cân nhắc tới loại van gió nào, tốc độ không khí ra sao trước khi lắp đặt một bộ điều khiển van gió. Yếu tố này cũng bao gồm áp lực tĩnh của hệ thống trong điều kiện bình thường. Các biến này có thể được tính bằng cách tìm ra những mô-men xoắn của van gió và diện tích van gió. Công thức toán giúp quyết định lên kích cỡ và loại động cơ điều khiển van gió nào cho phù hợp nhất

Động cơ điện một chiều là động cơ điện hoạt động với dòng điện một chiều.

Nguyên tắc hoạt động

Stator của động cơ điện 1 chiều thường là 1 hay nhiều cặp nam châm vĩnh cửu, hay nam châm điện, rotor có các cuộn dây quấn và được nối với nguồn điện một chiều, một phần quan trọng khác của động cơ điện 1 chiều là bộ phận chỉnh lưu, nó có nhiệm vụ là đổi chiều dòng điện trong khi chuyển động quay của rotor là liên tục. Thông thường bộ phận này gồm có một bộ cổ góp và một bộ chổi than tiếp xúc với cổ góp.[cần dẫn nguồn]

Nếu trục của một động cơ điện một chiều được kéo bằng 1 lực ngoài, động cơ sẽ hoạt động như một máy phát điện một chiều, và tạo ra một sức điện động cảm ứng Electromotive force (EMF). Khi vận hành bình thường, rotor khi quay sẽ phát ra một điện áp gọi là sức phản điện động counter-EMF (CEMF) hoặc sức điện độngđối kháng, vì nó đối kháng lại điện áp bên ngoài đặt vào động cơ. Sức điện động này tương tự như sức điện động phát ra khi động cơ được sử dụng như một máy phát điện (như lúc ta nối một điện trở tải vào đầu ra của động cơ, và kéo trục động cơ bằng một ngẫu lực bên ngoài). Như vậy điện áp đặt trên động cơ bao gồm 2 thành phần: sức phản điện động, và điện áp giáng tạo ra do điện trở nội của các cuộn dây phần ứng. Dòng điện chạy qua động cơ được tính theo biều thức sau:

{\displaystyle I=(V_{Nguon}-V_{PhanDienDong})/R_{PhanUng}}

Công suất cơ mà động cơ đưa ra được, được tính bằng:

{\displaystyle P=I*(V_{PhanDienDong})}

Cơ chế sinh lực quay của động cơ điện một chiều[sửa | sửa mã nguồn]

Một máy điện một chiều đang được tháo ra đại tu.

Khi có một dòng điện chạy qua cuộn dây quấn xung quanh một lõi sắt non, cạnh phía bên cực dương sẽ bị tác động bởi một lực hướng lên, trong khi cạnh đối diện lại bị tác động bằng một lực hướng xuống theo nguyên lý bàn tay trái của Fleming. Các lực này gây tác động quay lên cuộn dây, và làm cho rotor quay. Để làm cho rotor quay liên tục và đúng chiều, một bộ cổ góp điện sẽ làm chuyển mạch dòng điện sau mỗi vị trí ứng với 1/2 chu kỳ. Chỉ có vấn đề là khi mặt của cuộn dây song song với các đường sức từ trường. Nghĩa là lực quay của động cơ bằng 0 khi cuộn dây lệch 90o so với phương ban đầu của nó, khi đó rotor sẽ quay theo quán tính.

Trong các máy điện một chiều lớn, người ta có nhiều cuộn dây nối ra nhiều phiến góp khác nhau trên cổ góp. Nhờ vậy dòng điện và lực quay được liên tục và hầu như không bị thay đổi theo các vị trí khác nhau của rotor.

  1. Phương trình cơ bản của động cơ 1 chiều:
            E= K.omega          (1)
            V= E+Rư.Iư                (2)
            M= K Φ Iư                  (3)

Với:

          - Φ: Từ thông trên mỗi cực(Wb)
          - Iư: dòng điện phần ứng (A)
          - V: Điện áp phần ứng (V)
          - Rư: Điện trở phần ứng (Ohm)
          - omega: tốc độ động cơ(rad/s)
          - M: moment động cơ (Nm)
          - K: hằng số, phụ thuộc cấu trúc động cơ

Điều khiển tốc độ

Thông thường, tốc độ quay của một động cơ điện một chiều tỷ lệ với điện áp đặt vào nó, và ngẫu lực quay tỷ lệ với dòng điện. Điều khiển tốc độ của động cơ có thể bằng cách điều khiển các điểm chia điện áp của bình ắc quy, điều khiển bộ cấp nguồn thay đổi được, dùng điện trở hoặc mạch điện tử… Chiều quay của động cơ có thể thay đổi được bằng cách thay đồi chiều nối dây của phần kích từ, hoặc phần ứng, nhưng không thể được nếu thay đổi cả hai. Thông thường sẽ được thực hiện bằng các bộ công tắc tơ đặc biệt (Công tắc tơ đổi chiều).

Điện áp tác dụng có thể thay đổi bằng cách xen vào mạch một điện trở nối tiếp hoặc sử dụng một thiết bị điện tử điều khiển kiểu chuyển mạch lắp bằng Thyristor, transistor hoặc loại cổ điển hơn nữa bằng các đèn chỉnh lưu hồ quang Thủy ngân. Trong một mạch điện gọi là mạch băm điện áp, điện áp trung bình đặt vào động cơ thay đổi bằng cách chuyển mạch nguồn cung cấp thật nhanh. Khi tỷ lệ thời gian “on” trên thời gian “off” thay đổi sẽ làm thay đổi điện áp trung bình. Tỷ lệ phần trăm thời gian “on” trong một chu kỳ chuyển mạch nhân với điện áp cấp nguồn sẽ cho điện áp trung bình đặt vào động cơ. Như vậy với điện áp nguồn cung cấp là 100V, và tỷ lệ thời gian ON là 25% thì điện áp trung bình là 25V. Trong thời gian “Off”, điện áp cảm ứng của phần ứng sẽ làm cho dòng điện không bị gián đoạn, qua một đi ốt gọi là đi ốt phi hồi, nối song song với động cơ. Tại thời điểm này, dòng điện của mạch cung cấp sẽ bằng không trong khi dòng điện qua động cơ vẫn khác không và dòng trung bình của động cơ vẫn luôn lớn hơn dòng điện trong mạch cung cấp, trừ khi tỷ lệ thời gian “on” đạt đến 100%. Ở tỷ lệ 100% “on” này, dòng qua động cơ và dòng cung cấp bằng nhau. Mạch đóng cắt tức thời này ít bị tổn hao năng lượng hơn mạch dùng điện trở. Phương pháp này gọi là phương pháp điều khiển kiểu điều biến độ rộng xung (pulse width modulation, or PWM), và thường được điều khiển bằng vi xử lý. Đôi khi người ta còn sử dụng mạch lọc đầu ra để làm bằng phẳng điện áp đầu ra và giảm bớt tạp nhiễu của động cơ.

động cơ điện một chiều kiểu nối tiếp có thể đạt tới mô men quay cực đại từ khi vận tốc còn nhỏ, nó thường được sử dụng để kéo, chẳng hạn đầu máy xe lửa hay tàu điện. Một ứng dụng khác nữa là để khởi động các loại động cơ xăng hay động cơ điezen loại nhỏ. Tuy nhiên nó không bao giờ dùng trong các ứng dụng mà hệ thống truyền động có thể dừng (hay hỏng), như băng truyền. Khi động cơ tăng tốc, dòng điện phần ứng giảm (do đó cả trường điện cũng giảm). Sự giảm trường điện này làm cho động cơ tăng tốc cho tới khi tự phá hủy chính nó. Đây cũng là một vấn đề với động cơ xe lửa trong trường hợp mất liên kết, vì nó có thể đạt tốc độ cao hơn so với chế độ làm việc định mức. Điều này không chỉ gây ra sự cố cho động cơ và hộp số, mà còn phá hủy nghiêm trọng đường ray và bề mặt bánh xe vì chúng bị đốt nóng và làm lạnh quá nhanh. Việc giảm từ trường trong bộ điều khiển điện tử được ứng dụng để tăng tốc độ tối đa của các phương tiện vận tải chạy bằng điện. Dạng đơn giản nhất là dùng một bộ đóng cắt và điện trở làm yếu từ trường, một bộ điều khiển điện tử sẽ giám sát dòng điện của động cơ và sẽ chuyển mạch, đưa các điện trở suy giảm từ vào mạch khi dòng điện của động cơ giảm thấp hơn giá trị đặt trước. Khi điện trở được đưa vào mạch, nó sẽ làm tăng tốc động cơ, vượt lên trên tốc độ thông thường ở điện áp định mức. Khi dòng điện tăng bộ điều khiển sẽ tách điện trở ra, và động cơ sẽ trở về mức ngẫu lực ứng với tốc độ thấp.

Một phương pháp khác thường được dùng để điều khiển tốc độ động cơ một chiều là phương pháp điều khiển theo kiểu Ward-Leonard. Đây là phương pháp điều khiển động cơ một chiều (thường là loại kích thích song song hay hỗn hợp) bằng cách sử dụng nguồn điện xoay chiều, mặc dù nó không được tiện lợi như những sơ đồ điều khiển một chiều. Nguồn điện xoay chiều được dùng để quay một động cơ điện xoay chiều, thường là một động cơ cảm ứng, và động cơ này sẽ kéo một máy phát điện một chiều. Điện áp ra của phần ứng máy phát một chiều này được đưa thẳng đến phần ứng của động cơ điện một chiều cần điều khiển. Cuộn dây kích từ song song của cả máy phát điện và động cơ điện một chiều sẽ được kích thích độc lập qua các biến trở kích từ. Có thể điều khiển tốc độ động cơ rất tốt từ tốc độ = 0 đến tốc độ cao nhất với ngẫu lực phù hợp bằng cách thay đổi dòng điện kích thích của máy phát và động cơ điện một chiều. Phương pháp điều khiển này đã được xem là chuẩn mực cho đến khi nó bị thay thế bằng hệ thống mạch rắn sử dụng Thyristor. Nó đã tìm được chỗ đứng ở hầu hết những nơi cần điều khiển tốc độ thật tốt, từ các hệ thống thang nâng hạ người trong các hầm mỏ, cho đến những máy công nghiệp cà các cần trục điện. Nhược điểm chủ yếu của nó là phải cần đến ba máy điện cho một sơ đồ (có thể lên đến 5 trong các ứng dụng rất lớn vì các máy DC có thể được nhân đôi lên và điều khiển bằng các biến trở chỉnh đồng thời). Trong rất nhiều ứng dụng, hợp bộ động cơ – máy phát điện thường được duy trì chạy không tải, để tránh mất thời gian khởi động lại.

Mặc dù các hệ thống điều khiển điện tử sử dụng Thy ris tor đã thay thế hầu hết các hệ thống Ward Leonard cỡ nhỏ và trung bình, nhưng một số hệ thống lớn (cỡ vài trăm mã lực) vẫn còn đắc dụng. Dòng điện kích từ nhỏ hơn nhiều so với dòng điện phần ứng, cho phép các Thyristor cỡ trung bình có thể điều khiển một động cơ lớn hơn rất nhiều, so với điều khiển trực tiếp. Thí dụ, trong một ứng dụng, một bộ Thy ris tor 300 am pe có thể điều khiển một máy phát điện. Dòng điện ngõ ra của máy phát này có thể lên đến 15.000 am pe, với cùng dòng này, nếu điều khiển trực tiếp bằng thy ris tor thì có thể rất khó khăn và giá thành cao.

Điều khiển số động cơ một chiều có chổi than

Hiện nay, để điều khiển động cơ một chiều (DC motor), có rất nhiều phương pháp được đưa ra. Với sự ra đời của vi xử lý, bộ điều khiển số dần thay thế các bộ điều khiển tương tự truyền thống bởi nhiều ưu điểm. Về bộ điều khiển số, có rất nhiều phương pháp được đề nghị như: PID số, Fuzzy logic, Lyapounov,.. Tuy nhiên, chiếm hơn 70% bộ điều khiển trong công nghiệp là PID.

Động cơ điện là máy điện dùng để chuyển đổi năng lượng điện sang năng lượng cơ. Máy điện dùng để chuyển đổi ngược lại (từ cơ sang điện) được gọi là máy phát điện hay dynamo. Các động cơ điện thường gặp dùng trong gia đình như quạt điệntủ lạnhmáy giặtmáy bơm nướcmáy hút bụi

Ứng dụng

Ngày nay động cơ điện được dùng trong hấu hết mọi lĩnh vực, từ các động cơ nhỏ dùng trong lò vi sóng để chuyển động đĩa quay, hay trong các máy đọc đĩa (máy chơi CD hay DVD), đến các đồ nghề như máy khoan, hay các máy gia dụng như máy giặt, sự hoạt động của thang máy hay các hệ thống thông gió cũng dựa vào động cơ điện. Ở nhiều nước động cơ điện được dùng trong các phương tiện vận chuyển, đặc biệt trong các đầu máy xe lửa.

stator và rotor của một động cơ điện 3 pha

Trong công nghệ máy tính: Động cơ điện được sử dụng trong các ổ cứng, ổ quang (chúng là các động cơ bước rất nhỏ).

Nguyên tắc hoạt động

Phần chính của động cơ điện gồm phần đứng yên (stator) và phần chuyển động (rotor) được quấn nhiều vòng dây dẫn hay có nam châm vĩnh cửu. Khi cuộn dây trên rotor và stato được nối với nguồn điện, xung quanh nó tồn tại các từ trường, sự tương tác từ trường của rotor và stator tạo ra chuyển động quay của rotor quanh trục hay 1 mômen.

Phần lớn các động cơ điện hoạt động theo nguyên lý điện từ, nhưng loại động cơ dựa trên nguyên lý khác như lực tĩnh điện và hiệu ứng điện áp cũng được sử dụng. Nguyên lý cơ bản mà các động cơ điện từ dựa vào là có một lực lực cơ học trên một cuộn dây có dòng điện chạy qua nằm trong một từ trường. Lực này theo mô tả của định luật lực Lorentz và vuông góc với cuộn dây và cả với từ trường.

Phần lớn động cơ từ đều xoay nhưng cũng có động cơ tuyến tính. Trong động cơ xoay, phần chuyển động được gọi là rotor, và phần đứng yên gọi là stator.

Điều khiển động cơ

Đa số động cơ điện không đồng bộ có thể điều khiển tốc độ bằng cách đổi kiểu đấu nối (sao, tam giác); Một số có thể điều khiển bằng các biến tần. Các động cơ bước phải sử dụng một bộ điều khiển riêng (được gọi là driver).

Lịch sử phát triển

  • Năm 1820: nhà hóa học Đan Mạch Hans Christian Ørsted phát hiện ra hiện tượng điện từ.
  • Nguyên lý chuyển đổi từ năng lượng điện sang năng lượng cơ bằng cảm ứng điện từ được nhà khoa học người Anh là Michael Faraday phát minh năm 1821. Ông công bố kết quả thí nghiệm của ông về chuyển động quay điện từ, gồm chuyển động quay của dây dẫn trong từ trường và chuyển động của nam châm quanh 1 dây dẫn
  • Năm 1822: Peter Barlow phát triển ra bánh xe Barlow
  • Năm 1828: động cơ điện đầu tiên sử dụng nam châm điện cho cả rotor và stator được phát minh bởi Ányos Jedlink (nhà khoa học người Hungary), sau đó ông đã phát triển động cơ điện có công suất đủ để đẩy được một chiếc xe.
  • Năm 1834: Thomas Davenport chế tạo ra động cơ chỉnh lưu
  • Năm 1838: động cơ điệncông suất 220 W được dùng cho thuyền chế tạo bởi Hermann Jacobi
  • Năm 1866: Werner von Siemens sáng chế ra máy phát điện

Phân loại Động Cơ

  1. Động cơ không đồng bộ
  2. Động cơ đồng bộ
  1. Động cơ điện một chiều kích thích bởi nam châm vĩnh cửu
  2. Động cơ điện một chiều kích thích bởi dòng điện
  • Động cơ bước
  • Động cơ giảm tốc
  • Động cơ rung
  • Động cơ Servo

Phân tích mạch điện là điều mà các kỹ sư về điện luôn phải thực hiện trong mỗi dự án lắp đặt cho khách hàng của mình. Thực hiện tốt được việc này bạn sẽ giảm thiểu được nỗi lo ngại các tai nạn về điện xảy ra trong quá trình sử dụng. Đây là một việc hết sức quan trọng cần độ tỉ mỉ và chính xác cao.

Phân tích các mạch điện cơ bản điều khiển động cơ

Lợi ích của việc phân tích các mạch điện

– Hiểu được các nguyên tắc tự động khống chế.

– Nắm được các sơ đồ nguyên lý mở máy và đảo chiều quay động cơ trực tiếp bằng khởi động từ.

– Nắm được các sơ đồ nguyên lý làm việc tự động giới hạn hành trình và đảo chiều quay.

– Nắm được các sơ đồ nguyên lý mở máy gián tiếp các động cơ không đồng bộ ba pha.

– Tự động mở máy động cơ bằng phương pháp đổi nối sao / tam giác dùng rơle thời gian.

Ví dụ phân tích mạch điện

Mạch điện mở máy và bảo vệ động cơ điện

Đây là cách mở máy trực tiếp,động cơ lồng sóc. Dòng điện mở máy cao nhưng momen lớn. Thường dùng phổ biến ở các động cơ có công suất thấp và trung bình. Mạch điện gồm cầu chì để bảo vệ sự cố ngắn mạch, rơle nhiệt bảo

vệ quá tải động cơ.

Vận hành:

Đóng cầu dao CD ấn nút ON khởi động từ K sẽ làm việc đóng các tiếp điểm động lực K lại cấp điện cho động cơ làm việc, mạch luôn làm việc nhờ tiếp điểm duy trì K. Muốn dừng động cơ ta ấn nút OFF cắt điện qua cuộn hút K ngưng làm việc mở các tiếp điểm động lực K ra động cơ ngừng làm việc.

Mạch mở máy Y/ dùng timer có cùng điện áp định mức với khởi động từ:

+ Khởi động: Sau khi đóng cầu dao CD ta ấn vào M cuộn dây K và Y có điện tác động (mạch 1-3-5-K-4-2 và 1-3-5-7-Y-6-4-2) để đóng các tiếp điểm chính của mạch động lực là K và Y lại, động cơ khởi động theo hình Y lúc này rơle thời gian PB cũng có điện ( mạch 1-3-5-PB-4-2) và tất cả đều được duy trì bằng tiếp điểm 3-5.

+ Sau một thời gian duy trì cần thiết để tốc độ động cơ đạt xấp xỉ định mức thì tiếp điểm thường đóng của PB(5-7) mở ra để cắt khởi động từ Y, tiếp điểm hình sao ở mạch stato nhả ra, tiếp tục tiếp điểm thường mở, đóng chậm 3-9 của PB đóng lại để cấp điện cho điều khiển khởi động từ tam giác() tác động (mạch 1-3-9-8-4-2) tiếp điểm chính đóng lại động cơ làm việc ở chế độ này.

+ Hai tiếp điểm phụ liên động 6-4 và 8-4 của Y và  ở mạch khống chế có tác dụng đảm bảo an toàn, tránh sự cố tác động nhầm cùng một lúc gây ra ngắn mạch.

Mạch mở máy Y/ dùng nút ấn:

Nguyên lý làm việc: Khi ấn MY khởi động từ Y và khởi động từ K làm việc, động cơ làm việc ở chế độ Y.Sau khỏang 3 đến 5 giây ấn nút OFFY khởi động từ Y ngừng làm việc,nhưng tốc độ động cơ vẫn còn quay và khởi động từ K vẫn làm việc nhờ tiếp điểm duy trì K, ấn liền M khởi động từ  làm việc và động cơ làmviệc ở chế độ  và động cơ làm việc ở chế độ này.

– Hai tiếp điểm gày chéo tránh hai khởi động từ Y và  làm việc cùng một lúc.

– Muốn động cơ làm việc ở chế độ  thì phải ấn MY trước. Nếu ấn M trước thì không làm việc được.

Việc phân tích mạch điện có nghĩa rất lớn trong quá trình chuẩn bị, cũng như cần được triển khai thường xuyên trong quá trình sử dụng để kiểm tra kịp thời những thay đổi có hại cho hệ thống điện.

Máy phát điện hiện nay thường gặp nhiều trong các ngành kinh tế như: công nghiệp, giao thông vận tải và trong các dụng cụ sinh hoạt trong gia đình. Đa số các máy phát điện hiện nay sử dụng động cơ điện một chiều để tạo ra dòng điện phục vụ cho nhu cầu của con người. Vậy cấu tạo chi tiết của động cơ này như thế nào hãy cùng chúng tôi tìm hiểu qua bài viết dưới đây nhé!

Động cơ điện 1 chiều có cấu tạo như thế nào?

Động cơ điện một chiều có thể phân thành hai phần chính: phần tĩnh và phần động.

Phần tĩnh hay stato

Là phần đứng yên của máy (hình 1 – 1), bao gồm các bộ phận chính sau:

  1. a) Cực từ chính

Là bộ phận sinh ra từ trường gồm có lõi sắt cực từ và dây quấn kích từ lồng ngoài lõi sắt cực từ. Lõi sắt cực từ làm bằng những lá thép kỹ thuật điện hay thép cacbon dày 0,5 đến 1mm ép lại và tán chặt. Trong động cơ điện nhỏ có thể dùng thép khối. Cực từ được gắn chặt vào vỏ máy nhờ các bulông. Dây quấn kích từ được quấn bằng dây đồng, và mỗi cuộn dây đều được bọc cách điện kỹ thành một khối tẩm sơn cách điện trước khi đặt trên các cực từ. Các cuộn dây kích từ được đặt trên các cực từ này được nối tiếp với nhau.

  1. b) Cực từ phụ

Cực từ phụ được đặt trên các cực từ chính và dùng để cải thiện đổi chiều. Lõi thép của cực từ phụ thường làm bằng thép khối và trên thân cực từ phụ có

đặt dây quấn mà cấu tạo giống như dây quấn cực từ chính. Cực từ phụ được gắn vào vỏ máy nhờ những bulông.

  1. 1. Gông từ

Gông từ dùng làm mạch từ nối liền các cực từ, đồng thời làm vỏ máy.

Trong động cơ điện nhỏ và vừa của máy phát điện thường dùng thép dày uốn và hàn lại. Trong máy điện lớn thường dùng thép đúc. Có khi trong động cơ điện nhỏ dùng gang làm vỏ máy.

  1. 2 Các bộ phận khác

Bao gồm:

– Nắp máy: Để bảo vệ máy khỏi những vật ngoài rơi vào làm hư hỏng dây quấn và an toàn cho người khỏi chạm vào điện. Trong máy điện nhỏ và vừa nắp máy còn có tác dụng làm giá đỡ ổ bi.

Trong trường hợp này nắp máy thường làm bằng gang.

– Cơ cấu chổi than: để đưa dòng điện từ phần quay ra ngoài. Cơ cấu chổi than bao gồm có chổi than đặt trong hộp chổi than nhờ một lò xo tì chặt lên cổ góp.

Hộp chổi than được cố định trên giá chổi than và cách điện với giá. Giá chổi than có thể quay được để điều chỉnh vị trí chổi than cho đúng chỗ. Sau khi điều chỉnh xong thì dùng vít cố định lại.

Phần quay hay rôto

Bao gồm những bộ phận chính sau :

A. Lõi sắt phần ứng

Dùng để dẫn từ, thường dùng những tấm thép kỹ thuật điện dày 0,5m phủ cách điện mỏng ở hai mặt rồi ép chặt lại để giảm tổn hao do dòng điện xoáy gây nên. Trên lá thép có dập hình dạng rãnh để sau khi ép lại thì đặt dây quấn vào.

Trong những động cơ trung bình trở lên người ta còn dập những lỗ thông gió để khi ép lại thành lõi sắt có thể tạo được những lỗ thông gió dọc trục.

Trong những động cơ điện lớn hơn thì lõi sắt thường chia thành những đoạn nhỏ, giữa những đoạn ấy có để một khe hở gọi là khe hở thông gió. Khi máy làm việc gió thổi qua các khe hở làm nguội dây quấn và lõi sắt.

Trong động cơ điện một chiều nhỏ, lõi sắt phần ứng được ép trực tiếp vào trục. Trong động cơ điện lớn, giữa trục và lõi sắt có đặt giá rôto. Dùng giá rôto có thể tiết kiệm thép kỹ thuật điện và giảm nhẹ trọng lượng rôto.

B. Dây quấn phần ứng

Dây quấn phần ứng là phần phát sinh ra suất điện động và có dòng điện chạy qua. Dây quấn phần ứng thường làm bằng dây đồng có bọc cách điện.

Trong máy điện nhỏ có công suất dưới vài kw thường dùng dây có tiết diện tròn. Trong máy điện vừa và lớn thường dùng dây tiết diện chữ nhật. Dây quấn được cách điện cẩn thận với rãnh của lõi thép.

Để tránh khi quay bị văng ra do lực li tâm, ở miệng rãnh có dùng nêm để đè chặt hoặc đai chặt dây quấn. Nêm có làm bằng tre, gỗ hay bakelit.

C. Cổ góp

Dùng để đổi chiều dòng điện xoay chiều thành một chiều. Cổ góp gồm nhiều phiến đồng có được mạ cách điện với nhau bằng lớp mica dày từ 0,4 đến 1,2 mm và hợp thành một hình trục tròn. Hai đầu trục tròn dùng hai hình ốp hình

chữ V ép chặt lại. Giữa vành ốp và trụ tròn cũng cách điện bằng mica. Đuôi vành góp có cao lên một ít để hàn các đầu dây của các phần tử dây quấn và các phiến góp được dễ dàng như hình dưới đây.

A – Khái niệm động cơ điều khiển van gió Honeywell:

Động cơ điều khiển van gió là một phần của một hệ thống sưởi ấm, thông gió và điều hòa không khí (HVAC). Động cơ điều khiển van gió  (Damper Actuator) điều tiết, điều khiển việc mở và đóng của một van gió. Việc mở van gió cho phép không khí từ bên ngoài đi vào, để làm mát bên trong tòa nhà. Ngoài ra, nó có thể đóng van gió lại để giữ không khí bên trong.

Động cơ điều khiển van gió được thiết kế có thể điểu khiển bằng điện hoặc khí nén. Động cơ điều khiển van gió thực hiện theo dạng lò xo, quay, và các biến thể tuyến tính. Động cơ điều khiển van gió được sử dụng phụ thuộc vào cấu hình của hệ thống HVAC trong tòa nhà.

B – Động cơ điều khiển van gió Honeywell hoạt động như thế nào?

Động cơ van gió hoạt động cho phép một hệ thống HVAC đưa không khí ở bên ngoài. Một hệ thống điều hòa không khí có thể chạy ở công suất cần thiết để làm mát toàn bộ không gian trong một tòa nhà.

Nếu nhiệt độ bên ngoài phù hợp, thì việc tận dụng không khí sẽ làm giảm áp lực lên hệ thống. Không khí được làm mát trong hệ thống sẽ đi vào tòa nhà, không khí nóng sẽ được đưa ra ngoài.

C – Lưu ý khi sử dụng động cơ điều khiển van gió trong hệ thống HVAC

Động cơ điều khiển van gió hoạt động kết hợp với bộ phận điều hòa không khí khác. Cần cân nhắc tới loại van gió nào, tốc độ không khí ra sao trước khi lắp đặt một bộ điều khiển van gió. Yếu tố này cũng bao gồm áp lực tĩnh của hệ thống trong điều kiện bình thường. Các biến này có thể được tính bằng cách tìm ra những mô-men xoắn của van gió và diện tích van gió. Công thức toán giúp quyết định lên kích cỡ và loại động cơ điều khiển van gió nào cho phù hợp nhất

 

Hiện nay, Honeywell đã ra mắt trên thị trường Việt Nam các dòng sản phẩm cho ngành HVAC như:

+  Động cơ điều khiển loại có lò xo phản hồi. (Spring return Damper Actuators)

+  Động cơ điều khiển loại không có lò xo phản hồi. (Non-Spring return Damper Actuators)

+  Động cơ điều khiển loại chặn lửa, hút khói. (Fire an Smoke Damper Actuators)

+  Bộ điều khiển nhiệt độ. (Thermostat)

 


Có Thể Bạn Quan Tâm:

Xem Thêm các tài liệu khác tại :https://dienhathe.info

https://dienhathe.com


Điện Hạ Thế


Download Bảng GiáCatalog mới nhất Tại:

http://dienhathe.info

Hotline: 0907 764 966

email: info@dienhathe.com

Website: www.dienhathe.org

Điện Hạ Thế.com phân phối các sản phẩm thiết bị Điện Công Nghiệp, Biến Tần, Khởi Động Mềm,Phụ kiện tủ điện, dây cáp điện, ATS-Bộ Chuyển Nguồn Tự Động,Điện Dân Dụng,Tụ Bù, cuộn kháng, bộ điều khiển và các loại thiết bị tự động.:

Thiết bị điện ABB, LS, Mitsubishi, Schneider, Hitachi, Huyndai, Fuji Siemens, MPE, C&S.

Cáp điện: Cadivi, Daphaco, Sang jin, Tài Trường Thành, Lion, Evertop, Taya.

Biến Tần: ABB, LS, Siemens, Mitsubishi

Khởi Động Mềm: ABB, LS, Mitsubishi.

Thiết Bị Tự Động: Siemens, Omron, Autonics,

Dây và Cáp Điều Khiển: Sang Jin

Bộ Chuyển Nguồn Tự Động: ABB, Socomec, Soung, Osemco

Phụ Kiện Tủ Điện : Leipole, CNC, Idec, Hanyoung, Selec, Đầu Cos, Phụ kiện Trung Quốc.

Tủ Điện: Các loại tủ điện có sẵn hoặc tủ điện đặt theo yêu cầu.

Điện Dân Dụng: MPE, Panasonic, Sino.

Tụ Bù, cuộn kháng và bộ điều khiển: Mikro, Selec, Samwha.

Tags Sản Phẩm

Điện Công Nghiệp, thiết bị điện, Phụ kiện tủ điện, dây cáp điện, ABB, LS, Mitsubishi, Schneider, Hitachi, Huyndai, Fuji Siemens, MPE, C&S. Cadivi, Daphaco, Sanjin, Tài Trường Thành, Lion, Evertop, Taya, Leipole, CNC, Idec, Hanyong, MPE

Download Catalog sản phẩm, bảng giá thiết bị Điện Công Nghiệp tại : http://dienhathe.info

 

Xuân 2020